2,312 research outputs found

    Quantum de Finetti theorem under fully-one-way adaptive measurements

    Get PDF
    We prove a version of the quantum de Finetti theorem: permutation-invariant quantum states are well approximated as a probabilistic mixture of multi-fold product states. The approximation is measured by distinguishability under fully one-way LOCC (local operations and classical communication) measurements. Our result strengthens Brand\~{a}o and Harrow's de Finetti theorem where a kind of partially one-way LOCC measurements was used for measuring the approximation, with essentially the same error bound. As main applications, we show (i) a quasipolynomial-time algorithm which detects multipartite entanglement with amount larger than an arbitrarily small constant (measured with a variant of the relative entropy of entanglement), and (ii) a proof that in quantum Merlin-Arthur proof systems, polynomially many provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations.Comment: V2: minor changes. V3: new title, more discussions added, presentation improved. V4: minor changes, close to published versio

    Refinement and verification of concurrent systems specified in Object-Z and CSP

    Get PDF
    The formal development of large or complex systems can often be facilitated by the use of more than one formal specification language. Such a combination of languages is particularly suited to the specification of concurrent or distributed systems, where both the modelling of processes and state is necessary. This paper presents an approach to refinement and verification of specifications written using a combination of Object-Z and CSP. A common semantic basis for the two languages enables a unified method of refinement to be used, based upon CSP refinement. To enable state-based techniques to be used for the Object-Z components of a specification we develop state-based refinement relations which are sound and complete with respect to CSP refinement. In addition, a verification method for static and dynamic properties is presented. The method allows us to verify properties of the CSP system specification in terms of its component Object-Z classes by using the laws of the CSP operators together with the logic for Object-Z

    Communicating over adversarial quantum channels using quantum list codes

    Get PDF
    We study quantum communication in the presence of adversarial noise. In this setting, communicating with perfect fidelity requires using a quantum code of bounded minimum distance, for which the best known rates are given by the quantum Gilbert-Varshamov (QGV) bound. By asking only for arbitrarily high fidelity and allowing the sender and reciever to use a secret key with length logarithmic in the number of qubits sent, we achieve a dramatic improvement over the QGV rates. In fact, we find protocols that achieve arbitrarily high fidelity at noise levels for which perfect fidelity is impossible. To achieve such communication rates, we introduce fully quantum list codes, which may be of independent interest.Comment: 6 pages. Discussion expanded and more details provided in proofs. Far less unclear than previous versio

    Additive Extensions of a Quantum Channel

    Full text link
    We study extensions of a quantum channel whose one-way capacities are described by a single-letter formula. This provides a simple technique for generating powerful upper bounds on the capacities of a general quantum channel. We apply this technique to two qubit channels of particular interest--the depolarizing channel and the channel with independent phase and amplitude noise. Our study of the latter demonstrates that the key rate of BB84 with one-way post-processing and quantum bit error rate q cannot exceed H(1/2-2q(1-q)) - H(2q(1-q)).Comment: 6 pages, one figur

    Classical signature of quantum annealing

    Get PDF
    A pair of recent articles concluded that the D-Wave One machine actually operates in the quantum regime, rather than performing some classical evolution. Here we give a classical model that leads to the same behaviors used in those works to infer quantum effects. Thus, the evidence presented does not demonstrate the presence of quantum effects.Comment: 8 pages, 3 pdf figure
    • …
    corecore